Pages

Ads 468x60px

You can replace this text by going to "Layout" and then "Page Elements" section. Edit " About "

Blogger templates

Jumat, 11 Juli 2014

Quiz Matematika Bisnis : Matriks dan Multivariate

Petunjuk:
  1. Pilihlah 4 soal dari bagian A (matrik) dan 3 soal dari bagian B (fungsi multivariable) untuk anda kerjakan.
  2. Bagian A dan B hendaknya dikerjakan dalam satu bagian.

A. Matrik
1.      a. Diketahui Matrik A dan B  dan matrik B=. Buktikan bahwa A.I=I.A=A.      Hitung determinan matik B.
     b. Jika A=dan B=(6 1 9). Hitunglah A.B

2.      Jika A adalah matik simetris dan A=. Tentukan nilai a dan b serta hitung determinan A.


3.      For what value of u and v does


4.      Using the matrices , calculate, (i). 3A+2B-2C+D                (ii). A.B               and (iii). C.(A.B)


5.      Diketahui matrik A dan B; . Tunjukkan bahwa:             (i). ABBA,   
      (ii). A.B=0 does not imply that either  A or B is 0,    
      (iii). AB=AC and A do not imply that B=C


6.      Tentukan nilai x, y dan z dari matrik berikut
              

7.      Dari  matrik P dan Q, diketahui bahwa P.Q=I. , maka:
    1. Tentukan matrik Q
    2. Matrik C dimana



B. Fungsi Multivariable

1.      a). Suppose a firm has an order for 200 units of its product and wishes to distribute its manufacture between two of its plans, plant 1 and plant 2. Let q1 and q2 denote the outputs of plants one and two, respectively, and suppose the total cost function is given by  How should the output be distributed in order to minimize costs?
      b).The production function a firm is . The cost to the firm of l and k is 4 and 8 per unit, respectively. If the firm wants the total cost of input to be 88, find the greatest output possible subject to this budget constraint.

2.      a). A consumer has the utility function U(x,y)=x.y  and faces the budget constraint 2x+y=100. Find the only possible solution to the consumer demand problem.

b). A monopolist produces two goods x and y for which the demand functions are  and . The joint total cost function is . Find (a). the profit-maximizing level of output, (b). the profit maximizing price for each product and (c). the maximum profit.

3.      Tentukan turunan partial tingkat satu dari fungsi-fungsi berikut:
a. Z = 7x3e5xy                                                    b.  Z = 6xye-(5x+2)
c.                                          d. 

4.      Untuk fungsi-fungsi di bawah ini, (a) tentukan the critical points (CP)  dimana fungsi dinyatakan optimum, (b) tentukan pula apakah CP tersebut fungsi adalah relative max/min, inflection atau sadle point.
(a). Z=5x2-8x-2xy-6y+4y2+27
(b). Z=4x2+128x-12xy+96y+3y2+17
(c). Z=6x2-108x+4xy+12y-2y2-19


Selamat Mengerjakan, Semoga Sukses!!!!

Tidak ada komentar:

Posting Komentar

Related Posts Plugin for WordPress, Blogger...